Noncentral bimatrix variate generalised beta distributions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bimatrix variate beta type IV distribution: relation to Wilks’s statistic and bimatrix variate Kummer-beta type IV distribution

In this paper the bimatrix variate beta type IV distribution is derived from independent Wishart distributed matrix variables. We explore specific properties of this distribution which is then used to derive the exact expressions of the densities of the product and ratio of two dependent Wilks’s statistics and to define the bimatrix Kummer-beta type IV distribution.

متن کامل

Distribution of the product of determinants of noncentral bimatrix beta variates

The product moments of existing and new noncentral bimatrix variate beta distributions with bounded domain are derived. From these, exact expressions for the distributions of statistics are obtained by using the Mellin transform. These distributions add value to multivariate statistical analysis with specific reference to factors of Wilks’ statistics and the product of generalized statistics.

متن کامل

Computing discrete mixtures of continuous distributions: noncentral chisquare, noncentral t

In this article, we address the problem of computing the distribution functions that can be expressed as discrete mixtures of continuous distributions. Examples include noncentral chisquare, noncentral beta, noncentral F , noncentral t, and the distribution of squared sample multiple correlation. We illustrate the need for improved algorithms by pointing out situations where existing algorithms...

متن کامل

Matrix-variate Beta Distribution

We propose matrix-variate beta type III distribution. Several properties of this distribution including Laplace transform, marginal distribution and its relationship with matrix-variate beta type I and type II distributions are also studied.

متن کامل

Matrix Variate Kummer-dirichlet Distributions

(1.1) { Γ(α)Ψ(α,α−γ+1;ξ) }−1 exp(−ξv)v(1+v), v > 0, (1.2) respectively, where α > 0, β > 0, ξ > 0, −∞ < γ,λ < ∞, 1F1, and Ψ are confluent hypergeometric functions. These distributions are extensions of Gamma and Beta distributions, and for α < 1 (and certain values of λ and γ) yield bimodal distributions on finite and infinite ranges, respectively. These distributions are used (i) in the Bayesi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Metrika

سال: 2009

ISSN: 0026-1335,1435-926X

DOI: 10.1007/s00184-009-0280-1